Year: 2022

Landmark Breakthrough for Robbins TBM ‘Big Tex’

Robbins Mill Creek TBM 'Big Tex'

The Robbins Main Beam TBM, dubbed ‘Big Tex’, broke through on July 25, 2022 in Dallas, Texas, USA.

On July 25, 2022, a crowd gathered as a large Robbins Main Beam TBM, dubbed ‘Big Tex’, broke through in Dallas, Texas, USA. The machine and its continuous conveyor system, for the Mill Creek Drainage Relief Tunnel, successfully bored 8 km (5 mi) in chalk and shale at up to 498 m (1,634 ft) advance in one month. “I think when you step back and look at what was accomplished by this team as whole…the overall length and size of this tunnel, the TBM conversion, the everyday grind to keep moving forward…it truly is something to be proud of, professionally and personally. No single individual could reach this milestone. It took a great team of skilled individuals. I am fortunate to be a part of it,” said Nick Jencopale, Sr. Project Manager for contractor JV Southland/Mole.

Good advance rates were not the only cause for celebration: the unique project required a planned in-tunnel diameter change of the TBM from its original 11.6 m (38 ft) to a more compact 9.9 m (32.5 ft). The first-of-its-kind conversion process was undertaken 2.8 km (1.7 mi) into the bore and was not done inside a shaft or pre-excavated portal.  “The TBM conversion was a unique challenge that we were excited about, and ultimately provided a more efficient method for the desired product compared to the alternative options. Hopefully the successful conversion proved that this option can be considered for future tunnel projects,” said Jencopale.

While there were many detailed steps to the conversion process, precision design of the machine was a key aspect.  “We started with a smaller machine, then we made a kit or second skin that was slightly larger. And then when the time came, we just took that skin off. It was essentially that simple,” said Evan Brinkerhoff, Robbins Field Service Manager. The conversion took about four months and was completed in April 2021.

Personnel gather at the breakthrough shaft for Mill Creek.

A crowd gathers as the Robbins TBM breaks through into a shaft at the Mill Creek Drainage Relief Tunnel in Dallas, Texas, USA.

“The Robbins Main Beam TBM (‘Big Tex’) performed consistently throughout the duration of the tunnel excavation. There were very minor issues and little overall downtime as a result of the TBM itself,” said Jencopale. Due to the relatively favorable ground conditions in much of the tunnel, including low rock strength and low abrasivity, only eight disc cutters were changed during the length of tunnel bored at the larger diameter. At the time of diameter change the full dress of cutters was changed, and since that change only 14 cutters have needed replacing. Crews did encounter some fault zones, and installed rock bolts and wire mesh in the tunnel crown as needed.

With the TBM-driven portion of the tunnel now complete, work can commence to remove the machine from the tunnel and install a final lining. The tunnel is a designated critical infrastructure project for the City of Dallas, providing 100-year flood protection for areas of East Dallas that have experienced severe flooding in the past. Construction work is expected to be complete in late 2024/early 2025.


Unprecedented In-Tunnel Diameter Conversion of the Largest Hard Rock TBM in the U.S.

The largest hard rock TBM ever to bore in the USA, an 11.6 m diameter Robbins Main Beam TBM, recently underwent a planned in-tunnel diameter change to a more compact 9.9 meters. The first-of-its-kind conversion process for the Main Beam TBM was undertaken 2.8 km into the bore and was not done inside a shaft or pre-excavated portal. This paper will detail the unique dual-diameter machine designed for the Mill Creek Drainage Relief Tunnel in Dallas, Texas, USA, machine performance, and successful size conversion process that took place in early 2021—a process that utilized the four C’s of construction to enormous benefit: Communication, Cooperation, Collaboration and Coordination.


Hard Rock Tunnel Boring at the Jefferson Barracks Tunnel

The Metropolitan St. Louis Water District’s Project Clear is a 28-year program targeting wastewater capacity throughout St. Louis, MO. The extensive program includes the Jefferson Barracks Tunnel, running parallel to the Mississippi River at 2 m ID and 5,400 m long.  A rebuilt Robbins Main Beam TBM began boring but hit challenging conditions about 2,400 m in, including water inflows. A larger 4.1 m Robbins Main Beam machine, launched in 2022, is now completing the remaining 3,050 m in limestone, dolomite, and shale. The TBM is utilizing a high-powered, high breakout torque cutterhead along with enhanced 360-degree probing & grouting capabilities to detect any karst formations.


The Next Generation of Mixed Ground Tunnel Boring Machines

What is the most economical way of tunneling in mixed ground that may experience high pressures? Non-continuously pressurized, mixed ground Tunnel Boring Machines (TBMs) are being utilized to deal with a wide range of geology. Continuous improvements in these mixed ground machines allow for ever-increasing efficiency and reduction of project risk due to unexpected conditions. Read this paper for a look at how new improvements to Crossover machines will enable excavation of an expanded range of ground conditions. These conditions include mixed ground with low fines, mixed face rock, and fracture / fault zones with high pressures where in the past a Slurry TBM may have been utilized.


World Tunnel Congress 2022

Event Name: ITA-AITES World Tunnel Congress 
Dates: September 2-8, 2022
Location: Copenhagen, Denmark
Stand: E-11B

Come join us September 2-8 in Copenhagen, Denmark for the ITA-AITES World Tunnel Congress, the premiere event for tunneling and underground construction. More than 160 exhibitors will convene, and hundreds of technical papers will be presented on the latest topics of interest. Stop by our stand E-11B to converse with our expert international team, and find out the latest about our products, projects, and talks at the conference.

Technical Presentation: 

Wednesday September 7
Track 4, Mechanized Tunnelling 6
Hard Rock TBM Tunnelling Session, Room Wed6

11:30 – 11:50 AM
Rock Tunnels at High Water Pressure: Non-Continuous Pressurized Tunneling vs. Slurry Tunneling
Presented by Lok Home, Robbins President

Poster Presentations:

A Novel, Non-Circular Tunnel Boring Machine for Underground Mine Development
By Dennis Ofiara and Mike Lewis

A Clean Solution for Renewable Energy: Small Diameter Hydro Tunneling
By Sindre Log


Robbins TBM takes on Karstic Limestone below St. Louis

Jefferson Barracks 2 TBM in Shop

The Robbins Main Beam is boring well so far, advancing 21 m (70 ft) in its first two shifts after launch.

In Spring 2022, a specialized Robbins 4.1 m (13.5 ft) diameter Main Beam TBM launched in St. Louis, Missouri, USA, to complete a critical infrastructure tunnel for contractor SAK Construction. The machine, named “Mrs. Vera”, is boring Phase 2 of the Jefferson Barracks tunnel, a 3,050 m (10,000 ft) long tunnel in karstic limestone. Designed to detect karst and other underground features, the unique machine comes equipped with enhanced 360-degree probe drilling capabilities, as well as versatile ground support options including McNally crown support, wire mesh, ring beam erector and roof drills.

“The overall design of the machine is a good fit for our project, not only for the mining aspect but also for the capability to run two probe drills in multiple locations around the TBM,” said Brotherman Bragg, Project Superintendent for SAK Construction. “The challenges I anticipate during tunneling are mostly related to ground conditions. The area that we are tunneling in has a potential for karst features. The probe drills are our lifeline and with the two probe drills on the machine, I believe that we will find out what’s in front of us before we get there, giving us the ability to take care of potential problems.”

During Phase 1 of Jefferson Barracks, a rebuilt 3.35 m (11.0 ft) diameter Robbins Main Beam TBM hit challenging conditions about 2,400 m (7,900 ft) into tunneling. The machine encountered a large vertical feature along with flowing and unstable ground that required the TBM to remain in place. While various options including ground freezing were considered, they were ultimately deemed infeasible.

A 62 m (205 ft) deep recovery shaft and 60 m (200 ft) long adit were built to stabilize the area and remove the machine in what would be an intensive and ultimately successful undertaking. After recovery of the machine, SAK Construction turned to Robbins for a solution to bore the remaining tunnel in what would become Phase 2 of the project.

SAK and Robbins agreed to do extensive in-shop testing of the new, larger TBM to ensure there would be no unnecessary delays on site. The TBM was ultimately delivered a couple months late due to both COVID-related matters and the additional in-shop testing. SAK operational personnel and Robbins personnel were heavily involved in final assembly and testing procedures.

After arriving in St. Louis, the TBM was swiftly assembled and launched from the recovery shaft. “The Robbins Field Service techs have been excellent in their support, helping us assemble the machine, and troubleshoot the machine. Our challenges during the assembly and launch from the shaft were minimal – this is the fastest and most efficient assembly we’ve ever had on a machine. We assembled the TBM in four weeks, which was a huge hurdle,” said Bragg.

Jefferson Barracks 2 TBM Ground Support

Designed to detect karst and other underground features, the unique machine comes equipped with enhanced 360-degree probe drilling capabilities, as well as versatile ground support options.

“The overall design [of the TBM] is very functional and thus far in the early stages it seems to be mining very well,” continued Bragg. “So far, I’m very pleased with the machine and with the technicians.” Early indications were good, with the machine advancing 21 m (70 ft) in its first two shifts after launch.

The Jefferson Barracks project is a key component of MSD Project Clear, a massive USD $6 billion program undertaken by the Metropolitan St. Louis Water District to target water quality and wastewater concerns in the city and surrounding areas. The 5,400 m (17,800 ft) long, 2 m (7 ft) internal diameter Jefferson Barracks tunnel runs parallel to the Mississippi River and extends to the Lemay Wastewater Treatment Plant located at the confluence of the River des Peres and the Mississippi. The tunnel is slated for completion in Autumn 2023.


Robbins Main Beam Triumphs on Challenging China Drive

Yin Han Ji Wei TBM in shop

The Robbins TBM and experienced crew were able to overcome difficult conditions including severe water inflows, abrasive rock with a maximum quartz content of 92.6%, high energy rock bursts, and more.

The breakthrough of an 8 m (26.2 ft) diameter Robbins Main Beam TBM at China’s Yin Han Ji Wei project is not only a cause for celebration, but also a triumph of technology and perseverance. The machine overcame 17.5 km (10.9 mi) of tunnel in some of the most difficult geology ever encountered, breaking through in the first quarter of 2022. The water diversion tunnel traverses the Qinling Mountains of Shaanxi Province, with up to 2,000 m (1.2 mi) of cover.

“Every day was full of challenges. We are most proud of our teamwork and unyielding spirit,” said a representative for tunnel contractor China Railway Tunnel Group (CRTG). The ground, consisting of mainly quartzite and granite, was estimated to have a rock hardness of between 107 and 309 MPa (15,500 to 45,000 psi) UCS, with high abrasivity and a maximum quartz content of 92.6%.

“This was in my opinion the most challenging project ever completed by TBMs, and it proves TBMs are up to overcoming even the most difficult conditions. I have great respect for the CRTG crews and management, and I thank them for moving TBM technology to a new level,” said Robbins President Lok Home.

During tunneling, crews encountered over 14,000 rock bursts, some with energy as high as 4,080 kJ.  “Robbins’ overall equipment performance was excellent from the beginning to the end of breakthrough, and during seven years of excavation. This is despite the super hard rock with high quartz content, strong rock bursts, and substantial water inrushes,” said the CRTG representative.

Water ingress occurred a total of 69 times during the drive, with some inflows extremely high – exceeding 20,000 m3 (700,000 ft3) of water in one day from a single point. In-tunnel ambient temperatures peaked at 40 degrees Celsius and 90% humidity.

Rock bursting Yin Han Ji Wei

During tunneling, crews encountered over 14,000 rock bursts, some with energy as high as 4,080 kJ.

Throughout the challenges, the crew found ways to persevere. Rock bursting was controlled using steel slats in conjunction with the McNally crown support system, while zones of stress were predicted using a micro-seismic monitoring system. The micro-seismic system records rock stresses in a borehole 20 m (65 ft) ahead of the face and predicts the potential for rock bursting following comparative analysis with similar rockburst data from other projects, as well as from nearby sections of tunnel in the Qinling Mountains.

Water ingress was controlled by dramatically increasing pumping capacity in the tunnel to 41,000 m3 (1.4 million ft3) per day. Systematic probing ahead of the TBM was also used to detect water, as well as rock bursting. When ingress exceeded 70 percent of the in-tunnel pumping capacity, crews then carried out grout injections.

The abrasive, hard rock was another challenge, addressed by Robbins through the use of Extra Heavy Duty (XHD) 20-inch disc cutters that showed long cutter life and lower wear compared to standard 20-inch discs. The crew also optimized TBM operation with at times lower production rates where needed.  “Especially with such a huge challenge, a strong cutterhead is required to ensure production. The quality of Robbins’ cutterhead has been proven. The cutterhead can still work properly after the tunnel breakthrough,” said the CRTG representative.

With TBM tunneling complete, the route will become part of two other sections of an altogether 82 km (51 mi) long tunnel that will link up the Hanjiang and Weihe Rivers in Shaanxi province. The completed tunnel, for owner Hanjiang-to-Weihe River Valley Water Diversion Project Construction Company, will secure a water supply for towns and agricultural areas in Central China, while also generating hydroelectricity.


Robbins Single Shield completes Canada’s Largest Outfall

On March 3, 2022, a 7.95 m (26.1 ft) diameter Robbins Single Shield TBM completed a record-setting run below Lake Ontario. The machine, for the Southland/Astaldi JV, bored 3.5 km (2.2 mi) in sedimentary rock for the Ashbridges Bay Outfall in Toronto, Ontario, Canada.

The 3.5 km (2.2 mi) long Ashbridges Bay Outfall Tunnel is Canada’s largest outfall and connects to 50 risers in Lake Ontario.

The machine launched in March 2021 from an 85 m (280 ft) deep, 16 m (53 ft) diameter shaft and began its bore in predominantly shale, with limestone, siltstone and sandstone. During its excavation, the TBM and its experienced crew bored a city-wide record of 30 rings in one day, or about 47 m (154 ft) of advance. The machine and crew surpassed a previous best day of 21 rings at a project with similar specifications. “We are proud to have completed another successful tunnel with Robbins and greatly appreciate their field service support,” said Joe Savage, Project Manager for Southland.

“This is a wonderful type of geology for our machines. During the entire excavation, a total of 7 cutters were changed. The wear behavior is incredible, between 2 and 5 mm, and everyone is amazed by the cutter performance,” said Alfredo Garrido of Robbins Field Service.

The crew had been operating the machine in two shifts of 12 hours from Monday to Friday. A Robbins continuous conveyor system including vertical conveyor transported muck behind the machine. “Every 25 machine cycles, it was necessary to stop the excavation to probe drill hole in front of the cutterhead to check for possible water. This drilling was done basically every day, stopping the machine for a few hours, but it was very necessary,” said Garrido.

The last kilometer of tunnel, bored below a series of 50 risers under Lake Ontario, was challenging but ultimately successful. “The team really worked together to overcome some tough ground conditions and high water inflows in the tunnel,” said Savage.

The Ashbridges Bay Outfall won accolades from the Tunnelling Association of Canada (TAC) in late 2021 for its all-remote machine acceptance, the first of its kind, enacted due to the Covid-19 pandemic.

The success of the TBM is just one cause for celebration. The project won accolades from the Tunnelling Association of Canada (TAC) in late 2021 for its all-remote machine acceptance enacted due to the Covid-19 pandemic. The machine acceptance, the first of its kind, enabled communication and confirmation between the machine’s assembly location in Mexico, suppliers in the U.S. and those involved in Canada.  “It was a challenge for all the people involved due the pandemic travel restrictions; however, due to good planning and communication we were able to go through the Acceptance Test successfully. I think this might become quite common in the near future,” said Robbins Project Manager Javier Alcala.

The completed outfall will connect to the 50 in-lake risers to enable efficient dispersion of treated effluent over a wide area of the lake, making it the largest outfall in the country. The project for the City of Toronto will improve the city’s shoreline and Lake Ontario’s water quality by replacing a 70-year-old existing outfall.


6º Simposio Internacional de Túneles y Lumbreras en Suelos y Rocas

Join AMITOS, the Mexican Society for engineering of tunnels and underground space, in the sixth symposium on tunnels and shafts in soil and rock. Robbins President Lok Home will kick off the conference with a virtual keynote talk on the industry’s approach to R&D, focusing on a particular innovation: non-circular tunneling in rock.

Keynote Talk Details:
Monday March 29
9:00 – 10:00 AM CT
Non-Circular Tunneling in Rock: A New Way Forward
Presented by Lok Home, Robbins President


CIM 2022

Event Name: CIM Convention
Location: Vancouver, BC, Canada
Dates: May 1-4, 2022

The CIM Convention focuses on the future of mining. Join Robbins at the conference for a presentation with Robbins Technical Director, Brad Grothen, P.E., on new innovations for underground mining in rock. Keep an eye out for Abstract Number 252 Faster Underground Mine Development: Getting to First Ore Quicker using a Novel, Non-Circular Tunneling Machine – date and location coming soon! Find out how to reach your ore body quicker, safer and more cost effectively in this talk.