Category: Press Releases

Robbins XRE TBMs Cross the Finish Line in Massive Metro Project

In Spring 2021, the second of two 6.65 m (21.8 ft) diameter Robbins Crossover XRE TBMs made its third and final breakthrough for India’s Mumbai Metro Line 3. The first machine made its final breakthrough for the project in late April. The tunnel drives were a triumph for joint venture contractor Larsen & Toubro and the Shanghai Tunnel Engineering Company (L&T – STEC), as the crew and equipment overcame unpredictable terrain, high-pressure water ingress, and government-imposed lockdown orders during the Covid-19 pandemic.

Surya I breakthrough

The first of the Robbins Crossover machines broke through in April 2021.

The two custom-built machines were selected to bore parallel 2.9 km (1.8 mi) tunnels between the Cuffe Parade station and CST stations, breaking through into several station sites along the way. “It is the first time in India that Dual Mode, Crossover type TBMs equipped with a horizontal screw conveyor and high torque / high speed (two-speed) cutterhead drives were used. Overall, the performance of the Crossover TBMs was found satisfactory and we are in the process of shifting these TBMs for the L&T Chennai Metro project,” said Mr. Palwinder Singh, Head – Tunnel Construction for the L&T – STEC JV.

In another first for India, the Crossover TBMs employed a unique technique in a 554 m (1,820 ft) long section from Hutatma Chowk to CST stations. They were used in the benching of the NATM Platform tunnel through basalt rock (removal of the bottom section of rock remaining in the station after conventionally removing the top section). “This requires fine control on the operational parameters of the TBM because only 25% of the cutterhead is excavating the rock mass, while the remaining 75% of the cutterhead has no contact with rock or soil. In addition, the TBM was relaunched without using a reaction frame, instead taking reaction from half segments erected during the benching of the NATM Platform Tunnel. These innovative concepts were accomplished for the first time in India at Mumbai Metro Line-3, Package 1, and I therefore have many reasons to feel proud on the completion of tunneling,” said Singh.

L&T – STEC made impressive progress throughout tunneling despite the many exacting circumstances surrounding the scope of work. Above ground, the joint venture not only had to navigate the restrictions of working within an urban environment, such as limited work hours and the slow removal of muck due to minimal space and traffic, but also faced concern for major structures such as the Mittal Towers and the historic Bhikha Behram Well located along the tunneling route. The Crossover TBMs excavated with only 15 to 20 m (49 to 65 ft) of cover separating them from these important structures, which had to be instrumented to monitor vibrations, movements, and potential settlement.

Benching the NATM station

In a first for India, the Robbins Crossover TBMs were used in the benching of the NATM Platform tunnel through basalt rock in a 554 m (1,820 ft) long section from Hutatma Chowk to CST stations.

Underground, L&T – STEC faced a complex geological mix of fresh greyish basalt, soft volcanic tuffs, shale, and breccias—consolidated rocks of angular fragments of disintegrated volcanic rock. One of the biggest concerns, however, came from the tunnels’ proximity to the coastline of the Arabian Sea. During one point, TBM 1 was only 25 m (82 ft) from the coastline, with the invert level of the tunnel running approximately 22 m (72 ft) below mean sea level. As anticipated with circumstances such as these, the Crossovers faced a significant amount of groundwater with up to 300 liters/min during their excavation.

Despite these obstacles, the TBMs were still able to maintain impressive rates. TBM 2 even completed one push in a swift 14 minutes. “In fact, the boring rate of the Crossover TBMs was never an issue for us. It was only limited by the rate of muck removal and we could have finished the tunnels much faster,” said Singh.

The Robbins Crossover TBMs were the first machines of their kind employed in India, using both a horizontal screw conveyor and high torque / high speed (two-speed) cutterhead drives.

L&T engineers were highly involved in the specifications and designs of the machines and worked closely with Robbins to prepare for the challenges the project presented. While L&T had extensive tunneling experience, tunneling with a Crossover machine was entirely new to them. To remedy this, Robbins provided a team of key personnel to train L&T in all aspects of the machines’ design and operation. “Working with Robbins field service was more than satisfactory. Even during the Covid-19 pandemic times, Robbins field service was available 24 hours a day, 7 days a week. What else can one expect?” said Singh.

Each milestone reached on this project is another step closer toward significantly improving the lives of Mumbai residents. As the financial capital of India and one of the most populated cities in the world, Mumbai is faced with an excessive amount of road traffic. It currently takes up to two hours to drive the 25 km (15 mi) distance from Cuffe Parade to the airport—the same trip on the finished metro will take a mere 50 minutes. The completion of Mumbai Metro Line 3, which is expected in 2025, will not only save residents transit time, but is expected to initially decrease road traffic in the area by 35%, reducing daily fuel consumption by 460,000 liters.


Robbins XRE TBM bores Eşme-Salihli Railway Tunnel

A Robbins Crossover machine is boring Turkey’s 3.05 km (1.90 mi) Eşme-Salihli Railway Tunnel through mixed conditions including sandstone, gravelstone, claystone, and siltstone for contractor Kolin Construction.

A Robbins 13.77 m (45.18 ft) diameter Crossover XRE TBM launched recently in spring 2021 in Eşme, Turkey. The large machine is boring the 3.05 km (1.90 mi) Eşme-Salihli Railway Tunnel through mixed conditions including sandstone, gravelstone, claystone, and siltstone. Contractor Kolin Construction expects some occasional groundwater and weak rock between 5 to 9 MPa (720 to 1,300 psi) UCS, with the potential for a gassy environment.

The titanic TBM was launched after more than seven years in storage, and following a few upgrades to systems to ensure they meet the newest safety and efficiency standards. “I am very happy that the TBM has been launched. Up to now, the machine has bored nearly 500 m (1,600 ft) in gneiss and mudstone. This is an opportunity for Robbins to prove that large diameter TBMs can bore in such tunnels, even in very complex geology and difficult ground conditions,” said Yunus Alpagut of ATES, Robbins’ Turkish subsidiary. Alpagut went on to explain why the project is so important: “Recently, there have been large diameter, non-Robbins machines that have failed at projects such as the high-speed railway in Bilecik, so this is very important to show the Turkish tunneling industry that large machines are up to the challenge.”

To get through the challenging conditions, the large diameter XRE has a number of unique features. The large diameter design enables both a screw conveyor and belt conveyor to remain in place, enabling swift conversion between modes, and operation in 100% EPB and hard rock modes.

In EPB mode, the screw conveyor operates as in any typical EPB machine. The screw features a replaceable inner liner and replaceable carbide wear bits for abrasion protection. A mixed ground cutterhead is fitted with knife bits that can be switched out with disc cutters in harder conditions. The machine design includes a man lock for cutterhead inspection and changes, and mixing bars inside the mixing chamber.

Esme Salihli XRE Cutterhead Rotates

The large diameter Robbins Crossover TBM has bored nearly 500 m (1,600 ft) in gneiss and mudstone as of May 2021.

To convert to hard rock mode, the mixing bars and initial portion of the screw conveyor can be optionally retracted. EPB knife bits are then replaced with disc cutters on the cutterhead, and the EPB scrapers on the cutterhead are replaced with bucket lips. Muck paddles are installed in the cutterhead to allow the muck to fall into the muck chute. A hydraulic muck ring allows a chute attached to the bulkhead to move forward and down at a diagonal angle, allowing rock chips to be deposited in the chute and through the screw conveyor onto the TBM belt conveyor. To keep up production rates in both modes, the Robbins Torque-Shift System is used: a two-speed gearbox that enables efficient tunneling in hard, mixed, or soft ground.

The Eşme-Salihli Railway Tunnel is part of the Ankara-İzmir High Speed Railway Project for the Turkish State Railways (TCDD). The 508 km (316 mi) line will eventually connect Polatlı in Ankara Province to Izmir, the third most populous city in Turkey, surpassing the Istanbul-Ankara High-Speed Railway as the longest rail line in the country once complete. The double-track railway system will convey passengers at top speeds of 250 km/h (160 mph), completing the journey between the two cities in 3.5 hours—a journey that would normally take 6.5 hours by car.


Robbins enters a New Chapter

Global TBM Company, newly established by industry veteran Lok Home, is proud to announce the recent purchase of substantially all the assets of The Robbins Company.  The company will operate as Robbins and with Mr. Home as the President and CEO. The acquisition will result in a seamless transition for a number of ongoing projects throughout the world, as Robbins renews its commitment to service, quality underground equipment, and top-notch support that its customers have come to expect. For a brief message from Lok Home, view the video here.

Home said the company has a bright future as a result of the transaction.  We are starting off the new year with a respectable backlog of orders,” he noted. “In 2021 and beyond, our clients can depend on Robbins to deliver high quality machines, and technically superior machines for very difficult projects,” said Home. “That’s where Robbins really stands out.”

Home went on to say that Robbins is starting 2021 with no significant bank or institutional debt. “We have many projects to look forward to,” he continued. “Robbins is currently delivering Crossover machines and TBMs equipped for challenging geological conditions in many countries including the U.S., Norway, India, China and Canada.” The company’s conveyor and small boring machine divisions will also continue to deliver equipment worldwide.

Home emphasized that Robbins has always been focused on building the best and strongest machines. He pledged that they will continue to do that. “We still have our strong engineering team and we plan to continue our many industry involvements including the International Tunneling Association (ITA) and its associate member organizations. We’re glad to be a part of this community and this industry,” Home added.

The company expects to continue with exciting new developments as well, including a soon-to-be-unveiled non-circular rock boring machine. Robbins remains focused on creativity and innovation to solve the industry’s greatest challenges.

About Robbins

Robbins is one of the world’s foremost developers and manufacturers of advanced, underground construction machinery. Headquartered in Solon, Ohio, USA, Robbins is a total supply firm offering customized Tunnel Boring Machines, conveyors, cutters, and more, as well as knowledgeable field service personnel and technical support. The company has been an active industry participant and innovator for nearly 70 years.

From the first modern Tunnel Boring Machine built in 1952 to recent innovations such as the Crossover TBM for varied ground conditions, Robbins engineering and innovations have made a success of the world’s most difficult tunneling projects.

 


Robbins Main Beam carves out a win in Louisville

A 6.5 km (4 mi) long tunnel for wastewater storage below Louisville, Kentucky, USA has more to it than meets the eye.  “At first glance, this seems like a straightforward project, but it turned out to be much more challenging,” said Shemek Oginski, Project Manager for the contractor, a joint venture of Shea/Traylor. The 6.7 m (22 ft) diameter Robbins Main Beam TBM and conveyor system had to cope with overstress in the crown that resulted in significant rock fallout in seven different areas, as well as methane gas in the tunnel.  By the machine’s breakthrough on September 22, 2020, the crew had much to celebrate.

The machine was refurbished and consisted of older components as well as a brand new cutterhead supplied by Robbins and completely rebuilt electrical and hydraulic systems. “This was definitely an older machine—I actually operated it on the DART [Dallas Area Rapid Transit] tunnels in Dallas, Texas in the 1990s, but with many of the components being new we were confident in it,” said Oginski.

The original tunnel was expected to be 4 km (2.5 mi) long, but a change order added to the length by 2.1 km (1.3 mi). The extension was ordered by the owner, Louisville Metropolitan Sewer District (MSD), and its Engineer-of-Record Black & Veatch in order to eliminate four surface CSO storage basins. That included one basin originally located at the site of the TBM breakthrough, explains Oginski: “The original CSO site was located in close proximity to Beargrass Creek and had flooded multiple times. It was decided to extend the tunnel to that site in order to use the tunnel as storage instead, and connect it to the sewer system.”  MSD installed a sheeting wall to protect the site from floodwaters while Shea-Traylor installed liner plate in the retrieval shaft, resulting in a site that is in much better shape.

It was in the 2.1 km (1.3 mi) extension, essentially a bifurcation of the main tunnel, where the crew encountered much of the crown overstress. “The longest section of overstress was 700 m (2,300 ft) and took two and a half months to get through,” said Oginski.  The crew switched up the prescribed rock bolt pattern of four to six bolts at 1.5 m (5.0 ft) centers, and instead installed six bolts at 1 m (3 ft) centers. “It worked out to two rows per push. When that wasn’t enough, we installed wire mesh in the crown, mine straps, and channels.  It definitely took extra time to install steel support, remove loose rock, and deal with the rock coming down so we could install rock support safely.” Overbreak varied from a few inches above the machine to 30 cm (1 ft) or more.

“We also had encountered natural methane gas in the tunnel just shortly before holing through,” said Oginski.  The methane was discovered while the crew were probing out 150 ft ahead of the machine—something that the crew did continuously throughout the bore, using one, two or four probe holes depending on the geology. “We were down for about two weeks and were able to contain the methane within the cutterhead, where concentration spiked at 100% LEL. We were able to resume work after systematically ventilating, probing and grouting multiple times.”

Despite the challenges, the TBM was able to achieve up to 658 m (2,159 ft) in one month and 192 m (630 ft) in one week. The Robbins conveyor, including a 68.6 m (225 ft) long vertical belt, made this progress achievable, said Oginski: “The conveyor is definitely the way to go, especially for longer drives. There was quite a difference in performance between the extension tunnel, which we mined with lift-boxes, and mining with the conveyor.  Our best month in the extension tunnel with the boxes was 221 m (725 ft), so that is a big difference.”

With tunneling now complete, Oginski is “definitely proud that we got to the end, as this is a challenging project.” The contractor is removing the components of the TBM to be stored in their yard in Mt. Pleasant, PA, and sees future applications for the equipment. “If the right project comes up then yes, it’s likely we would use this machine again.”


Robbins Single Shield breaks through Turkey’s Hardest Rock

On July 24, 2020, a jubilant ceremony marked a milestone for southern Turkey’s arduous Bahçe-Nurdaği High-Speed Railway Tunnel.  The first TBM-driven portion of tunneling using an 8.0 m (26.2 ft) diameter Robbins Single Shield machine is now complete. The 8.9 km (5.5 mi) long TBM tunnel was no easy bore, as it was excavated through some of the hardest and most abrasive rock ever encountered in the country.

“We are proud of the TBM crew who acted rapidly and were well organized to overcome the challenging ground conditions with a unique Single Shield TBM for the completion of the first tube of the Bahçe-Nurdağı Railway Project,” said Deniz Sahin, TBM Chief for contractor Intekar Yapi A.Ş.

Ground conditions during tunneling ranged from abrasive, interbedded sandstone and mudstone with quartzite veins to highly weathered shale and dolomitic limestone.  The TBM encountered rock measuring between 136 and 327 MPa (19,700 to 47,400 psi) UCS. Water ingress with fines was expected in fault lines and shear zones affected by the East Anatolian Fault. “The TBM became stuck in three different fault zones, which we got through by building bypass tunnels. In smaller fault zones, we encountered excessive material flow and the TBM had to be stopped, while ground had to be stabilized with chemical injections while we cleaned the cutterhead,” said Sahin. Water inflows of 10 liters per second on average were removed using a dewatering system.

The majority of tunneling, said Sahin, was in metasandstone with quartz, with an average of 220 MPa (31,900 psi) UCS and a Cerchar abrasion value of 3.87. In such regions, the TBM’s 19-inch back-loading disc cutters had to be changed frequently and there was high vibration. Despite the challenges, Sahin was impressed by the machine’s overall capacity: “The Robbins Single Shield TBM’s motor power, hydraulic power and cutterhead torque were quite strong. The secondary ventilation and air suction systems inside the TBM were powerful. The connections between the gantries, scaffolding systems, walkways and working areas were good.”

The TBM ultimately achieved up to 456 m (1,500 ft) per month, a result achieved with the help of a Robbins continuous conveyor system for muck removal. “The electric motor and gearbox capacity of the conveyor system was quite enough for a 10 km (6.2 mi) tunnel and we had no failure on them. The conveyor performed well even under excess material and the whole system was quite robust,” said Sahin.

The owner, Turkish State Railways Directorate (TCDD), is aiming to overhaul the railway connection in southeastern Turkey by providing a shorter, faster route in one of the country’s busiest railway corridors. The new rail line between the towns of Bahçe and Nurdağı includes two parallel 9.8 km (6.1 mi) tunnels being excavated by both NATM (850 m / 0.5 mi) and TBM (8.9 km / 5.5 mi).


Tough TBM breaks through after navigating Faults, Karst, and More

In January 2020, a Robbins 5.97 m (19.6 ft) diameter Main Beam TBM cleared its final hurdle when it broke through in Guangxi Province, China.  The TBM excavated its first of two tunnels, an 11.9 km (7.4 mi) long conduit for Lot 1 of the North Line Water Irrigation Project, Letan Water Reservoir, Drought-Relief. The tunnel was marked by a gauntlet of challenges, from karst cavities to fault zones and water inflows. The workers on the jobsite, contractor Guangdong No. 2 Hydropower Bureau Co., Ltd., and the owner, Construction Management Bureau for the Letan Water Reservoir, had much to celebrate after completion of what is widely regarded as the most complex and longest tunnel on the North Line project.

Boring with the Robbins Main Beam TBM and continuous conveyor system began in summer 2015. “There was no precedent in this province for using a Main Beam TBM to excavate a tunnel longer than 10 km. We didn’t have relevant local experience to use for reference,” explained Yongjiu Jin, Deputy Manager of the Project for contractor Guangdong No. 2 Hydropower Bureau Co., Ltd. The machine did encounter a number of difficult geological obstacles as it bored through limestone rock, but was still able to achieve advance rates up to 40 m (130 ft) per day in good ground.

Much of the geology consisted of lightly weathered limestone in rock class II to III, with some sections in class IV to V rock that required the heaviest amount of ground support, ranging from rock bolts to ring beams and mesh. “Our team encountered a coal seam, gasses in the tunnel, two large water inrushes, three fault zones up to 103 m long, 11 karst cavities, and more.  In order to solve the ground problems, there were more than 160 special technical research meetings held,” said Yongjiu.

Throughout tunneling, the contractor expressed thanks for Robbins Field Service staff. “Robbins personnel provided good technical support from equipment installation and commissioning through to tunnel completion. After the equipment was handed over to our company, they still helped us with equipment usage on our project, which makes us very satisfied with the Robbins after-sales service.  Robbins really delivered: the after-sales phase was not the end of service, but the beginning of site service,” said Yongjiu.

While the completion of the first tunnel—the longest single-heading construction on record for water tunnels in Guangxi—is a milestone, there is more to do. The Robbins machine will be inspected and relaunched to bore a second tunnel 4.2 km (2.6 mi) in length.  The ground conditions are predicted to be equally challenging, but the tunneling operation has some help from ground prediction methodology. Tunnel Reflection Tomography (TRT)—consisting of ground prediction using seismic waves—is being used to detect changing conditions ahead of the TBM.  The method can predict the distribution and scale of joints and fissures, allowing the crew to plan ahead.

Located near Laibin City, the North Line project provides much needed drought relief using a network of tunnels totaling 29.4 km (18.3 mi). “This tunnel will realize the dream of drought control that people in Central Guangxi have had for many years. The breakthrough is the most important milestone event in this first phase of the North Line project,” said Yongjiu.


Robbins unveils Largest Hard Rock TBM in the U.S. at Mill Creek

In December 2019, the City of Dallas, Texas, USA unveiled the largest hard rock TBM ever to bore in the U.S. The 11.6 m (38.1 ft) diameter Robbins Main Beam TBM will excavate the 8 km (5 mi) Mill Creek Drainage Relief tunnel, and its size is not its only distinction. The adaptable machine will change size partway through the bore, to a more compact 9.9 m (32.5 ft).

The unique Robbins TBM will be used to dig a tunnel designed to provide 100-year flood protection for east and southeast Dallas, areas affected in recent years by severe storms. The tunnel will protect 2,200 commercial and residential properties, including Baylor Medical Center. The current drainage system in these areas was constructed 50 to 70 years ago, and only provides two to five years of flood protection. “The completion of the TBM assembly marks a major milestone in the Mill Creek Tunnel Project,” said Council Member Lee Kleinman, chair of the Transportation and Infrastructure Committee for the City of Dallas. “I’m thrilled to see this type of engineering marvel happening right here in Dallas.”

The dual-diameter aspect of the Robbins TBM will be a first-of-its-kind conversion process. The contractor, Southland/Mole Joint Venture (SMJV), will make the conversion underground about 2.8 km (1.8 mi) into the bore. The two diameters are needed as the upstream section of the tunnel is designed with a circular cross section and peak flow rate of 42 m3/sec (15,000 ft3/sec), while the downstream 2.8 km (1.8 mi) portion has a higher peak flow of 565 m3/sec (20,000 ft3/sec) and was initially designed as a horseshoe cross section. Using the TBM for the entire tunnel is less time consuming and costly. “Robbins and SMJV are working closely to create the safest and most efficient sequence for completing this conversion within the limits of the bore. The City of Dallas (Owner) and our Project Team are very excited to embark on this unique challenge,” said Nick Jencopale, Project Manager for Southland Holdings.

The Robbins TBM, named “Big Tex” with permission of the State Fair of Texas, has been designed with a specialized cutterhead including removable spacers and adjustable bucket lips to convert to a smaller diameter. The TBM will first complete its 11.6 m (38.1 ft) diameter section of the alignment, then back up about 21 m (75 ft) to a transition area for the conversion, which is expected to take six to eight weeks.

As the TBM bores, it will pass through Austin Chalk between 12 to 30 MPa (1,800 to 4,400 at depths from 31 to 46 m (100 to 150 ft) below the city.  The route is potentially gassy, so probe drilling is mandatory throughout the project. Crews will utilize ground support including eight 3.9 m (13 ft) long rock bolts every 1.5m (5 ft) with wire mesh and channel straps as needed. The finished tunnel will be lined with a 380 mm (15 in) thick cast-in-place concrete lining.

“Big Tex will work 24 hours a day to excavate the tunnel with crews ranging in size depending on activities,” said Rachel Sackett, marketing and communications director for Southland Holdings. Based on previous work through similar geology, the project team expects TBM excavation to progress rapidly to an average of 25m (80 ft) per day, allowing the project to be completed on schedule in 2023.


Two Robbins Crossover TBMs to Bore Second Severomuysky Tunnel

In 1979, a 4.56 m diameter Robbins Double Shield TBM was delivered to bore the Severomuysky Service Tunnel, a 15.3 km long railway through the remote mountains of Siberia. Now, 40 years after the original machine was delivered, Robbins is returning to the role. Two 10.37 m diameter Crossover (XRE) TBMs will bore the second Severomuysky Tunnel, clocking in at 15.5 km long and running through mixed ground and fault zones. The new rail line is needed due to limitations on carrying capacity on the current Baikal-Amur Mainline (BAM) railway through the area. Currently 16 million tonnes of cargo are carried through the existing Severomuysky tunnel but the Russian Government wants to increase cargo carrying capacity by more than six times in the region.

The largest global anthracite producer, Sibanthracite Group, is taking on the tunnel construction with management by VostokCoal Management Company. The companies, owned by Dmitry Bosov, aim to increase coal transport by up to 100 million tonnes per year through the addition of the second tunnel. “Robbins has established itself on the market as the best manufacturer of hard rock machines, which are able to provide the maximum penetration rate in hard rock. This is one of the determining factors in connection with the tight deadlines for the implementation of our project. Also, Robbins is the only manufacturer to build the Crossover TBM,” said a representative of Sibanthracite Group. Other aspects of the supply include a continuous conveyor for muck removal, rolling stock, spare parts, and cutting tools.

Sibanthracite Group chose Crossover technology for a number of reasons, geology being chief among them. “A Crossover type tunnel boring machine was selected for tunneling due to the fact that the construction of the tunnel will be carried out in difficult heterogeneous geological conditions (from unstable waterlogged soils to hard rock). The Crossover is able to operate in two modes: Open mode, used while boring in hard rock formations, and closed mode (with earth pressure balance), used when boring in unstable water-logged soils,” said the Sibanthracite representative.

The lessons learned during the first Severomuysky tunnel—the importance of probe drilling, consolidation grouting, and preventing a shielded machine from becoming stuck in fault zones or squeezing ground—are all part of the Crossover TBM solution. “I was a young engineer working at Robbins when the Double Shield TBM was delivered for the first tunnel, so it is a special honor to bring this new technology to the second Severomuysky Tunnel in Siberia,” said Robbins President Lok Home. “Per the contract Robbins is supplying Crossover TBMs for the new parallel rail tunnel—these machines are made to bore in highly variable ground conditions while maintaining good advance rates. With our latest technology we hope to again prove TBMs are the better choice over Drill and Blast when difficult ground conditions are to be encountered.”

The machines will be designed for varying water pressures, ranging from 5 to 20 bar. They will feature Water Inflow Control, a system that seals off the face and periphery and creates a safe working environment in which to dewater and consolidate ground. The machines will feature probe drill ports and capabilities for 360-degree probe drilling and grouting ahead of the excavation face, while the Robbins Torque-Shift System will enable the machines to bore through collapsing ground and other situations that demand high torque. The machines will also be designed with a belt conveyor in hard rock mode that can be switched out with a screw conveyor when crossing into soft ground.

Crews will bore through the Severomuysky Ridge, a mountain range in Buryatia and part of the Stanovoy Highlands, which separates the basins of the Upper Angara and Muya Rivers. “The second Severomuysky tunnel is located in one of the most geologically active areas of our planet—on the north-eastern flank of the Baikal rift zone. The region is characterized by high seismic activity, difficult geological and hydrogeological conditions against the backdrop of a harsh climate (the summer period lasts only 80-100 days, temperatures from + 39°C in summer to -58°C in winter). The construction work on the portals is complicated by the presence of permafrost as well,” said the Sibanthracite representative. Construction of the new tunnel is expected to begin in 2020 and take five years.


Compact TBM bores longest Rock Tunnel at 2.46 m Diameter

In August 2019, a small diameter Double Shield TBM made a big impact. The 2.46 m (8.07 ft) diameter Robbins machine completed 3,475 m (11,400 ft) of boring with no intermediate access, making it the longest rock tunnel ever bored by a Double Shield TBM under 2.5 m (8.2 ft) in diameter.

The machine completed the Parmer Lane Wastewater Interceptor in Austin, Texas, USA for contractor S.J. Louis Construction. Despite obstacles including two tight curves of 150 m (500 ft) radius and unexpected ground conditions that required modification of the cutterhead in the tunnel, advance rates were good. The machine reached up to 380 m (1,250 ft) per month while mining in single 12-hour shifts per day. “It was a hard rock TBM, and it performed better than expected through hard rock,” said Zach West, Project Manager for S.J. Louis.

The challenges for the TBM and its crew were varied, explained West. “The pairing of this tunnel length, which is on the longer side, and the diameter, which is on the smaller side, is challenging.  The survey in a small tunnel with tight radius curves and limited surface access for over two miles is very difficult.” He added that the shallow tunnel depth, and the alignment to within a few feet of sanitary lines, high-pressure gas mains, and fuel tanks for gas stations, made TBM guidance critical.  “I would say that I am most proud of our ability to guide the machine successfully through these obstacles and into our retrieval shaft within our expected tolerances.”

Through one stretch, the tunnel advanced directly between a 30 cm (12 in) diameter, high-pressure gas main and fuel tanks for a gas station with limited as-built information.  “Navigating this section took a great deal of coordination with the local utility companies.  Because the tunnel diameter was too small for an automated guidance system, we manually surveyed the front of the machine at every push to ensure the machine was on track,” said West.

“I’m proud that they mined the longest tunnel to date for a small shielded gripper machine of this size without any safety issues.  Kudos to their management philosophy and jobsite team,” said Tom Fuerst, Robbins Utility Tunneling Sales Manager. Robbins assisted the crew while in the tight 150 m (500 ft) curves and helped with modifications required to the cutterhead and disc cutter arrangement.

The tunnel is located in an environmentally sensitive aquifer, with ground conditions ranging from soft dolomite with clay to limestone from 13 to 68 MPa (2,000 to 10,000 psi) UCS.   “While we tunneled through the softer material, our best advance rate was close to 0.9 m (3 ft) per hour.  When we tunneled through the expected limestone, advance rates were over 5.2 m (17 ft) per hour.  Our best day was 25 m (81 ft) in a single shift,” said West.

The majority of the tunnel used a simple two-rock-bolt pattern for support.  In the last 10% of the tunnel, ribs and lagging were used as support. Final carrier pipe, which is now being installed, consists of 110 cm (42 in) diameter fiberglass pipe.

The successful project is part of a larger trend towards small diameter, TBM-driven rock tunnels in the United States, says Fuerst. “It is primarily due to demographics and business growth.  The parts of the USA that are growing need to build out their sewer and water infrastructure. TBMs can mine long distances with tight curves.  They can reduce the need for multiple shafts, which lowers the overall project cost.  And, given that most small diameter pipelines follow a road or municipal right-of-way, traffic problems are reduced significantly compared with open cut operations.”

The Parmer Lane Wastewater Interceptor connects to two existing lift stations at Lake Creek and Rattan Creek.  The tunnel allows for these lift stations to be decommissioned, and will provide additional flow capacity by gravity, reducing operating costs for the City of Austin.


Major Milestone for Delaware Aqueduct Repair as Robbins Single Shield Completes Excavation

Adapted from the official press release of the New York City Department of Environmental Protection (NYCDEP).

On Tuesday August 13, The New York City Department of Environmental Protection completed excavation of the Delaware Aqueduct Bypass Tunnel, a significant milestone in the USD $1 billion effort to repair leaks in the longest tunnel in the world. The moment happened at 6:51 a.m. when a tunnel boring machine broke through a wall of shale bedrock nearly 700 feet (210 m) beneath the Town of Wappinger in Dutchess County, New York, USA. Excavation of the tunnel was completed on budget and ahead of schedule.

“I want to congratulate the engineers, project managers and local laborers who steered us toward this milestone with considerable skill and precision,” DEP Commissioner Vincent Sapienza said. Holing through is a major achievement for any tunneling project, especially one as large and complex as our repair of the Delaware Aqueduct. The moment is also a reminder that much work remains to be done as we move steadily toward completing this project in 2023 and ensuring the long-term reliability of the water supply system that sustains 9.6 million New Yorkers every day.”

The Delaware Aqueduct Bypass Tunnel is the largest repair project in the 177-year history of New York City’s water supply system. Its centerpiece is a 2.5-mile-long bypass tunnel that DEP is building 600 feet (180 m) under the Hudson River from Newburgh to Wappinger. When the project is finished in 2023, the bypass tunnel will be connected to structurally sound portions of the existing Delaware Aqueduct on either side of the Hudson River to convey water around a leaking section of the tunnel. The 85 mile (138 km) long Delaware Aqueduct, the longest tunnel in the world, typically conveys about half of New York City’s drinking water each day from reservoirs in the Catskills.

A massive Single Shield tunnel boring machine, manufactured by The Robbins Company in Solon, Ohio, USA, began to excavate the tunnel on Jan. 8, 2018. The tunneling machine mined 12,448 feet (3,794 m) during the 582 days that it pushed eastward from its starting point nearly 900 feet (270 m) below the surface in the Town of Newburgh in Orange County. According to data tracked by DEP, the machine excavated 89.8 linear feet (27.4 m) on its most productive day, 354.8 feet (108.1 m) during its best week, and 945 feet (288 m) during its most productive month. The tunnel boring machine excavated through three bedrock formations, starting with the Normanskill shale formation on the west side of the Hudson River, the Wappinger Group limestone formation, and finishing in the Mt. Merino shale formation on the east side of the river. The location and condition of these bedrock formations was well documented by New York City when it originally built the Delaware Aqueduct in the 1930s and 1940s. Engineers used that historical information to design the tunnel boring machine for the bypass tunnel and plan for its excavation.

As the tunnel boring machine forged ahead, it also lined the shale and limestone bedrock with precast rings of concrete. A total of 2,488 concrete rings were installed by the machine. Now that mining is finished, DEP will begin to install 16 foot (5 m) diameter steel liners inside the first layer of concrete. After the 230 steel liners are installed and welded together, they will be coated with a second layer of concrete. This “triple-pass” design will provide the bypass tunnel with structural stability and prevent leaks from occurring again in the future. During the excavation, the tunnel boring machine was driven, maintained and supported by dozens of local laborers who worked 24-hours, six days a week. They operated cranes, trucks and underground trains to collect the pulverized rock and haul it to the surface. They removed and replaced cutting discs on the front of the machine, and maintained the many complex systems that kept the tunnel boring machine functioning properly.

The Delaware Aqueduct Bypass Tunnel is the first tunnel built under the Hudson River since 1957, when the south tube of the Lincoln Tunnel was finished.

Background on the Delaware Aqueduct repair project

DEP has monitored two leaking sections of the Delaware Aqueduct – one in Newburgh, and the other in the Ulster County town of Wawarsing – since the early 1990s. The leaks release an estimated 20 million gallons (76 million liters) per day, about 95 percent of that escaping the tunnel through the leak near the Hudson River in Newburgh. DEP has continuously tested and monitored the leaks since 1992. The size of the cracks in the aqueduct and the rate of leakage have remained constant over that time.

In 2010, the City announced a plan to repair the aqueduct by building a bypass tunnel around the leaking section in Newburgh, and also by grouting closed the smaller leaks in Wawarsing. The project began in 2013 with the excavation of two vertical shafts in Newburgh and Wappinger to gain access to the subsurface. These shafts, 845 and 675 feet (258 and 206 m) deep respectively, were completed in 2017. Workers then built a large underground chamber at the bottom of the Newburgh shaft. That chamber has served as the staging area for assembly and operation of the tunnel boring machine, and as the location from which excavated rock is brought to the surface by underground trains and a large crane.

The existing Delaware Aqueduct will stay in service while the bypass tunnel is under construction. Once the bypass tunnel is nearly complete and water supply augmentation and conservation measures are in place, the existing tunnel will be taken out of service and excavation will begin to connect the bypass tunnel to structurally sound portions of the existing aqueduct. While the Delaware Aqueduct is shut down, work crews will also enter the aqueduct in Wawarsing to seal the small leaks there, roughly 35 miles (56 km) northwest of the bypass tunnel.

The project will mark the first time that the Delaware Aqueduct will be drained since 1958. In 2013, DEP installed new pumps inside a shaft at the lowest point of the Delaware Aqueduct to dewater the existing tunnel before it is connected to the new bypass tunnel. Those pumps will be tested several times before the tunnel is drained in 2022. The nine pumps are capable of removing a maximum of 80 million gallons (302 million liters) of water a day from the tunnel—more than quadruple the capacity of the pumps they replaced from the 1940s. The largest of the pumps are three vertical turbine pumps that each measure 23 feet (7 m) tall and weigh 9 US tons (8 metric tons).

Background on the tunnel boring machine “Nora”

The Delaware Aqueduct Bypass Tunnel was excavated by one of the world’s most advanced tunnel boring machines (TBM). The Robbins Single Shield TBM – which measures more than 470 feet (140 m) long and weighs upwards of 2.7 million pounds (1.2 million kg) – was named in honor of Nora Stanton Blatch Deforest Barney, a noted suffragist and the first woman in the United States to earn a college degree in civil engineering. Nora, who worked for the City’s as a draftsperson during the construction of Ashokan Reservoir, was also the first female member of the American Society of Civil Engineers.

The USD $30 million TBM arrived at the site in Newburgh in 2017. It was delivered in 22 pieces and took four months to assemble. The 21.6-foot (6.58 m) diameter TBM was built to withstand more than 30 bar of pressure. The machine needed to withstand high pressure because workers encountered huge inflows of water under immense pressure when the aqueduct was first built more than 70 years ago. The TBM was equipped with pumping equipment to remove up to 2,500 gallons (9,400 liters) of water per minute away from the tunnel as the machine pushed forward. The TBM was also outfitted with equipment to install and grout the concrete lining of the tunnel, and to convey pulverized rock to a system of railroad cars that followed the TBM as it worked. The railroad cars regularly traveled back and forth between the TBM and the bottom of Shaft 5B in Newburgh, delivering workers, equipment and rock between the two locations.